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ABSTRACT: Ecological risk assessments (ERA) of chemicals
are often based on mortality and reproduction of individuals.
To protect populations, fixed safety factors are applied to the
data. However, the relationship between individuals and
populations cannot easily be described by predefined numbers.
The use of population models may reduce uncertainty and,
hence, the risk for erroneous assessments. However, introducing
models also introduces additional complexity. Therefore, it is
desirable to keep the models as simple as possible. The objective
of the present study was to determine whether simple risk
equations or matrix models can improve ERA compared to
traditional endpoints. To examine this, complex models that
included environmental stochasticity and density dependence
were used to simulate population level risk based on dose−
response data for five chemicals. The risk, measured as
probability for pseudo extinction and recovery time, was then
compared to risk estimates based on individual level data (acute and chronic), risk equations, and simple matrix models. The results
showed that the simple matrix models reduced uncertainty by more than 88% and 76% compared to acute and chronic data,
respectively. Also the simple risk equation reduced uncertainty considerably (80% and 61% compared to acute and chronic data,
respectively).

■ INTRODUCTION
Ecological risk assessment (ERA) is a scientific process to
estimate the probability for ecological impact following a
certain activity, such as the release of a chemical.1 Presently,
ERAs of chemicals are mainly based on observations of effects
in individual organisms.2 For example, the two most commonly
used metrics to estimate ecological risk for fish populations are
acute LC50 (the Lethal Concentration that kills 50% of the
fish) and chronic NOEC for reproduction (No Observed Effect
Concentration, the highest tested concentration without a
statistical effect). However, the environmental protection goals
are mainly defined on the population level,3 such as population
size, sustainable harvest, and risk for extinction. To be useful for
decision makers, the observations on individuals have to be
extrapolated to the population level. The most frequently used
method for extrapolation is fixed safety factors,2,4 which are set
to reduce ecological risk to acceptable levels. However, it has
been shown that current extrapolations with fixed safety factors
involve a large degree of uncertainty, and can lead to both over-
and underprotective risk assessments.5−7

To reduce uncertainty, it has been suggested that population
models should be used more frequently in ERA.8−11 Population
models provide a link between the individual and the

population based on mathematical equations.12 This means
that the same kind of tests that are used to determine LC50 and
NOEC can be used to provide the input for population models.
The models can be used to predict the population level responses,
which in turn can be used to guide the decision-making process.13

A shift from studying the effects of chemicals on individual
organisms to higher levels of organization is also gaining
momentum among regulatory authorities.14 However, before
population models are used routinely in ERA, it should be
evaluated if they actually provide better information for risk
management.
Population models range in complexity, from simple

differential equations that only predict population size15 to
advanced models where population structure, resource
limitations, and natural environmental variability (stochasticity)
are considered.16 More advanced models provide a higher level
of ecological realism, but also require more data for the
parametrization. To estimate how environmental stochasticity
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and population density affect the population, observations over
a substantial period of time are often needed. Furthermore,
setting up, using, and interpreting such models require expertise
in population modeling. A more realistic alternative for ERA
may be to use simpler models, where environmental variability
and density dependence are ignored. Such models require
significantly less data for the parametrization, but may still
represent a clear improvement compared to the traditional
LC50 and NOEC. An example of models that may be useful in
ERA are matrix models, which are stage structured models
based on simple demographic data (survival and reproduction).17

Matrix models have a long history of use in conservation
biology12,18 and have been used to make successful recom-
mendations on how best to protect threatened and endangered
species.19 Matrix population models have also been used to
evaluate the effects of toxic chemicals in a number of studies.20−24

Furthermore, computer software are available for matrix popu-
lation models so that they can be used by risk assessors without
an extensive mathematical background.13 Hanson and Stark25

presented an even simpler method to estimate population level
risk, using simple linear risk equations that were derived from
population models. Using such equations would require no
understanding of population models, and no specific computer
software, but may still provide an improved estimate of popu-
lation level risk.
In the present paper, ERA based on simple risk equations

and matrix models was compared to ERA based on traditional
LC50 and NOEC. This was done by comparing the resulting
predicted no effect concentrations (PNEC) to the probability
for pseudo extinction and the recovery time for two fish species
that were simulated using complex models that included
environmental stochasticity and density dependence. Dose−
response relationships for five chemicals were created from data
presented in previously published papers. The two (models of)
fish species and the five dose−response curves should be seen
as random replicates to test the hypothesis that different ERA

methods provide different risk estimates and different levels of
uncertainty. The results were evaluated to see how informative
the different methods for ERA (LC50, NOEC, risk equations,
and matrix models) are for risk managers. However, because of
the method used, the study does not provide specific risk
estimates for the two species that were simulated using the
complex population models. The examined data are only
valuable as a basis for comparing the different PNECs.

■ METHODS

Population Models. The present study was based on
matrix population models for the fish species eelpout (Zoarces
viviparous) and perch (Perca f luviatilis). The models were age
structured and included density dependence and environmental
stochasticity. The data that were used to parametrize the
models were taken from the Program for Integrated Fish
Monitoring, which is funded by the Swedish Environmental
Protection Agency.26 Both models were based on females only,
assuming that males are not limiting for the population growth.
Age-specific vital rates (survival and fertility) were estimated
from the data and inserted into a Leslie Matrix (M). The
survival rate is the proportion of a given age class that survive
for one time step and the fertility value is the average number of
surviving descendants from a female of a specific age class during
one time step. Fertility is the product of fecundity (number of
fry/eggs) and survival to first age class (survival of recruits, Srec).
Fertility values for all age classes are inserted in the top row of M,
and the survival rates are inserted in the subdiagonal. By
multiplyingM with the population vector (N) of time t, N of time
t + 1 is given (Figure 1A). From N, the number of individuals (n)
in each age class is given.
The population model for eelpout was parametrized from 10

years of catch data from the Swedish reference site
Kvad̈öfjar̈den. A detailed description of the model parametrization
is given in Hanson et al.27 The eelpouts were caught and counted
in November each year. From this data set, a population model

Figure 1. (A) The Leslie matrix (M) includes fertility values (F) in the first row and survival rates (S) in the subdiagonal. In the perch model, no
maximum age was used. Therefore, an additionl survival rate was added in the lower right corner (Smax), reflecting the continuous survival probability
of the oldest (and largest) perch. The population vector (N) consists of the number of individuals in the different age classes (n). By multiplying M
with N of time t, N of time t + 1 is given. (B) Toxic impact on annual survival (ImpS) and fertility (ImpF) after exposure to five chemicals. The
impacts are presented as proportions of control (1 = undisturbed).
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with a projection interval of one year was created, starting and
ending in November. The females were grouped into the age
classes 0+, 1+, ..., 8+, where age 0+ represents the young of the
year (born in January), 1+ represents those that were born one
year earlier, etc. Survival rates and fertility values were set up in a
9 × 9 Leslie matrix. Survival rates for age classes 2+ and older
were estimated directly from the catch data. To estimate survival
for recruits, 0+ and 1+, it was assumed that survival increased
linearly from birth until age 2+. Eelpout is a viviparous species
(gives birth to live young), and the data included information
about fecundity in terms of the number of fry in the ovaries in
November. The age-specific fertility was estimated based on
fecundity, the proportion of mature females in the age class, and
Srec. Based on the data, environmental stochasticity was
introduced by letting survival rates and fertility values vary
between years. In addition to the previously described model,27

density dependence was added. The process for determining
density dependence is described in 28. The density dependence
was set to affect fecundity using the Beverton−Holt model.17
The population model for perch was parametrized from a

17-year data set of catches from Kvad̈öfjar̈den. The parameter-
ization of the perch model is described in detail by Hanson.29

The data were based on catches made in August each year. Also
in this case, the projection interval was, thus, one year (August
to August). Based on the catch data, 13 age classes were used in
the model, rendering a 13 × 13 Leslie matrix. The age classes
are referred to as 0+, 1+, ..., 12+, where 0+ is the young of the
year (born in May), 1+ were born one year earlier, etc. No
maximum age was used (i.e., no age where survival is zero).
Therefore, age class 12+ included all females of age 12 and older.
The mean survival rate of adults was estimated from catch curves
as suggested by Ricker.30 For juvenile age classes, there were not
enough data to estimate survival. Therefore, survival was assumed
to increase linearly from birth to age class 3+. Fertility was based
on the length of the females according to studies by Mann31 and
Heibo and Vollestad.32 Because length increased with age, this
rendered age-specific fecundity values. Environmental stochas-
ticity was introduced into the models by allowing Srec, S, and
length growth to vary randomly between years. As a result of this,
mean length and fecundity at a given age varies between years.
The magnitudes of the variations were adjusted to fit the data
using maximum likelihood.29

Toxicity Data. For the present study, two different types of
data were needed. Dose−response relationships for annual
survival and fertility were needed for the models (including the
risk simulations), and traditional data (96 h LC50 and chronic
NOEC) were needed for the traditional risk ratios. For the
hypothesis that was examined, it could be argued that the

chemicals should represent a random selection of chemicals
that are typically assessed for ecological risk. In principle, the
data could be constructed rather than being derived from real
toxicity tests (as long as the same data are applied to all
methods). However, without a foundation in real biological
data, it would be difficult to set the impacts on survival and
reproduction in a realistic relation to each other. Furthermore,
the endpoint NOEC cannot easily be derived from constructed
dose−response curves, as it depends on the actual concentrations
that are used in the toxicity test (one of several drawbacks with
the endpoint33). Toxicity data from constructed dose−response
curves would, thus, not fully capture the limitations of NOEC.
Therefore, the dose−response curves that were used in the
present study were based on previously published studies that
examined toxic effects on survival and reproduction for fish.
These studies had not been designed to provide the specific types
of data that were needed for the present study (annual survival
and fertility, LC50 and NOEC). However, the aim of the present
study was to compare different methods for ERA, and these
somewhat rough dose−response estimates serve well as examples
of typical dose−response data that are used in ERA.
Data from five different chemicals were used to determine

LC50 and NOEC, and to construct dose−response relation-
ships (Table 1, Figure 1B). Dose−response curves were created
by fitting the logistic function to the different sets of data,
where survival and fertility were presented as proportions of
control. The logistic function was in the form Imp = 1/
(1+e−(α+β×C)), where Imp is the proportional survival or fertility
after impact (ImpS and ImpF, respectively), C is the chemical
concentration (or dose), and α and β are model parameters.
The parameters were adjusted to fit the logistic function to the
data using the least-squares method. The data were based on
studies that ranged from 28 to 342 d, and for two of the
chemicals (4-nonylphenol and mercuric chloride), LC50 based
on observations after 96 h were also available. However, the
times of interest in the present study are 96 h (for LC50) and
365 d (for the models). Therefore, extrapolations between
times were necessary. All extrapolations of survival rates
between time spans were based on the assumption of equal
survival throughout the period.
In the model, fertility is the number of descendants from a

female that survive during one time step. When there is a higher
chemical concentration, fecundity, hatchability, and survival of
recruits are reduced. However, there is also a reduction in
survival of adults, which means that there is an increased
probability that the female will die before the fry are born or the
eggs are laid. To include this effect in the model, observed
effects on reproduction were combined with the effects on

Table 1. Data on Five Chemicals Used to Retrieve LC50 and NOEC Values and to Construct Dose−Response Curves: LC50
and Reproductive NOEC Values, Species Tested, Duration of the Test, and the Reference Used (Dose−Response Curves are
Shown in Figure 1B)

chemical LC50 NOEC unit species duration (days) reference

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 3545 0.18a ng/kgb Oncorhynchus mykiss 342 34
4-nonylphenol (4-NP) 221 6 μg/L Oncorhynchus mykiss 51 35
Bis(tributyltin) oxide (TBT) 14.7 0.66 μg/L Cyprinodon variegatus 133 36
Mercuric chloride (MC) 168 0.5 μg/L Pimephales promelas 60 37
Zinc pyrithione (ZnP) 5.31 1.22 μg/L Pimephales promelas 28 38

aFor TCDD, the lowest tested concentration (1.8 ng/kg) had a small effect on reproduction and NOEC could not be determined. Adding one more
concentration at the lower end of the scale is, therefore, a realistic estimate of NOEC. bFor TCDD, the exposure was dietary. This means that the
fish were exposed to doses rather than concentrations. For simplicity, the terms LC50 and NOEC will still be used, although the correct terms would
be LD50 (Lethal Dose) and NOEL (No Observed Effect Level).
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survival for the remaining part of the year. The logistic dose−
effect functions are shown in Figure 1B.
Simulated Population Level Risk. Risk is often defined as

a negative event (hazard) multiplied by the probability that it
will occur. However, the need for simplistic measures of risk in
ERA means that probability often is ignored. A good example
of a measure of population level risk is the probability of
pseudo extinction. This is defined as the probability that a
population will fall below a predefined population size at any
point within a certain time frame. In the present study, the
probability for pseudo extinction was estimated from the
stochastic models. This was done to get a measure of the
ecological risk at different concentrations of the five chemicals.
The probability for pseudo extinction was modeled for a time
span of 25 years, and the limit for pseudo extinction was set so
that the risk to fall below it would be 5% for an undisturbed
population. This limit has no ecological justification, but is in
agreement with the common use of α = 0.05 in hypothesis
testing statistics. This level was determined from 10 000 simulation
runs. The toxic effects were introduced in the models by
multiplying the fertility values (first row in M) with ImpF, and
the survival rates (all other rows in M) with ImpS (Figure 1). Also
this simulation was run 10 000 times, allowing for good estimates
of the probability for pseudo extinction at different concentrations.
Stressors other than chemicals may add to the population

level risk. Those stressors may be natural as well as anthro-
pogenic. A population that is already stressed by chemicals may
have a reduced ability to recover from other types of stress. A
measure of population level risk that accounts for this is the
population recovery potential.39,40 In the present study, recovery
potential was examined by model projections. The recovery
potential was measured as the time it takes for the population to
grow from 10% to 90% of the carrying capacity. To include
probability in the measure, the results are presented as mean ±
standard deviation (SD).
Individual Level Endpoints for ERA. From the toxicity

data described above, PNEC was derived from LC50 and NOEC
in accordance with the EU technical guidance document in
support of the directive on new notified substances (93/67/
EEC), the directive on biocidal products (98/8/EC), and the
regulation of existing substances (1488/94).2 This was done by
dividing the ecotoxicological endpoints with an assessment factor.
The assessment factor is larger when the data are further from the
protection goals. For example, when only data on acute mortality
are available, the LC50 is divided by 1000 to determine the
PNEC. The use of a factor 1000 is assumed to be protective and
is used to ensure that chemicals with a potential to harm the
environment will not slip through the ERA process based on only
acute data.2 If there is evidence that shows that the uncertainty is
lower (e.g., by data from similar compounds or a wide selection of
species), a lower assessment factor can be used. However, the
assessment factor for acute data can never be lower than 100.2

When chronic data are available, lower assessment factors can be
used to determine the PNEC. If data from only one long-term
study is available, the NOEC is divided by 100 to determine the
PNEC. If data are available from at least three species,
representing different trophic levels, the assessment factor 10 is
used. In the present paper, both lower and higher PNECs were
presented for ERAs based on LC50 and NOEC. The different
PNECs derived from acute data will be referred to as
PNECacute 1000 and PNECacute 100, for LC50s divided by assessment
factors of 1000 and 100, respectively. For chronic data, the two
levels will be referred to as PNECchronic 100 and PNECchronic 10, for

the NOEC divided by assessment factors 100 and 10,
respectively.

Population Level Endpoints for ERA. The most
commonly used endpoint for assessing the ecological risk on
the population level is the population growth rate (λ).41−44

If λ > 1, the population is growing, and if λ < 1, the population
is declining. The λ-value can easily be obtained from matrix
models as the dominant eigenvalue of the Leslie matrix. In
many demographic studies of toxic impact, the emphasis has
been to determine the concentration where λ = 1, which is seen
as a limit for what the population can tolerate without risking
extinction. By combining the deterministic models and the dose
response data, the concentration where λ = 1 can be deter-
mined. This represents the concentration where a population in
a constant, average environment would have a stable population
size. As there is always some degree of uncertainty in the
models and the toxicity data, a safety factor must be used to
keep the ecological risk acceptable. In the present study, this
was done by dividing the concentration where λ = 1 by an
assessment factor of 3 (AF = 3). This factor is just used as an
example in the present study to allow a comparison to PNECs
based on traditional risk ratios. The resulting predicted no
effect concentration will henceforth be referred to as
PNECmodel eelpout and PNECmodel perch.
Deterministic population models, without density depend-

ence, are clear simplifications of the complexity of natural
populations. However, they still require data for parametriza-
tion, and a risk assessor that is able to set up, use, and interpret
the models. Hanson and Stark25 presented a simpler method to
determine if λ is above or below 1. The method is based on
simple linear equations that are derived from five population
models for fish. Two linear equations were presented by
Hanson and Stark:25 one that was set to be protective of all five
population models and one that was set to represent the
average. In the present study, the protective equation was used
to estimate a safe concentration (eq 1).

− × − >S F13.07 2.86 0tox tox (1)

Here, Stox and Ftox are the percent reduction in survival and
fertility, respectively. As for the deterministic model, the
resulting concentration was divided by AF = 3. The resulting
concentration will be referred to as PNECequation.

Comparison of the dIfferent PNECs. To evaluate how
well the different PNEC values predict what will happen to the
population, they were all compared to the concentration where
the probability for pseudo extinction had doubled from 5% to
10% according to the simulations of the two species. This con-
centration will henceforth be referred to as C10%. This means
that for each set of data, ten PNEC/C10% ratios were retrieved
(two species × five dose−response relationships). To get an
estimate of the remaining uncertainty for each of the PNECs,
the coefficient of variance (CV = standard deviation/mean) was
calculated from the ratios. A high CV means that the variation
in margin of safety to C10% also is high.
It should be noticed that these simulations are not “true”

effects for the two species that were used to parametrize the
models. However, the aim of the present study was not to
predict effect for these particular species, it is to compare different
methods for ERA. Simulations of “constructed” species serve well
to examine this hypothesis as long as they are realistic estimates of
the behavior of real fish populations. Considering the quality of
the long-term data sets that were used to parametrize the models,
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we think that that these simulations represent trustworthy
estimates of population level risk for two “random” fish species.

■ RESULTS AND DISCUSSION

Table S1, Supporting Information, shows all the different
PNECs as derived from LC50, NOEC, the risk equation, and

matrix models. Furthermore, the probability for pseudo
extinction and the time for recovery at the different PNECs
are shown. The probability for pseudo extinction and time to
recovery are shown as a function of chemical concentration in
Figure 2 and Figure 3, respectively. The vertical lines show the
different PNECs that are presented in Table S1.

Figure 2. Probability of pseudo extinction. The curves show the probability for pseudo extinction as a function of chemical concentration for eelpout
(left) and perch (right). The vertical lines show the different PNECs (predicted no effect concentration). The values for the different PNECs can be
found in Table S1.
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The minimum level of data that is needed for ERA in the EU
is acute data for fish, daphnia, and algae. Assuming that fish is
the most sensitive organism, the maximum acceptable con-
centration in the environment would be PNECacute 1000. At this
level, the probability for pseudo extinction varied between 5%
and 65% (Table S1, Supporting Information, and Figure 2) and

the time to recovery varied about 5-fold (Table S1 and Figure 3).
In other words acute LC50 is not a very precise measure of
risk. Looking closer at the results, the highest risks occurred for
TCDD and MC. The reason for this is that reproduction is
affected at relatively low concentrations (compared to survival)
for these chemicals (Figure 1). Therefore, the risk will be

Figure 3. Mean recovery time. The solid curves show the mean recovery time as a function of chemical concentration for eelpout (left) and perch
(right). The dotted curves show the time in which there is a 95% probability for recovery. The vertical lines show the different PNECs (predicted no
effect concentrations). The values for the different PNECs can be found in Table S1.

Environmental Science & Technology Article

dx.doi.org/10.1021/es3008968 | Environ. Sci. Technol. 2012, 46, 5590−55985595



underestimated when effects on reproduction are ignored (i.e.,
when only LC50 is used). To reduce the frequency of under-
protective risk assessments, higher assessment factors could be
used. However, this would also increase the proportion of
overprotective risk assessments. For example, there was almost
no population level effect at the PNECacute 1000 for ZnP. Using a
higher assessment factor would make the risk assessment for
ZnP even more overprotective. Overprotective risk assessments
have economical as well as environmental costs as potentially
beneficial chemicals are unnecessarily restricted, thus taking
resources from populations and ecosystems that are truly in
danger.
When the lower assessment factor for acute data was used,

the probability for pseudo extinction was higher than 90% and
the time for recovery was more than 100 years for three
chemicals. This would suggest that the lower assessment factor
leads to underprotective risk assessments. However, according
to the EU guidance document,2 the lower assessment factor can
only be used if there is available evidence that shows that the
uncertainty is lower. Such evidence was not examined in the
present study, and it may not be valid to use AF = 100 for these
specific chemicals. Therefore, it cannot be concluded that
PNECacute 100 is underprotective. It is quite possible that in cases
where evidence exists to show that uncertainty is lower, AF =
100 would not be underprotective.
When chronic NOEC and AF = 100 were used to determine

PNEC, almost no increase in risk was seen. When chronic
NOEC and AF = 10 were used, the probability for pseudo
extinction ranged from about 5% to 35% and the time to
recovery varied about 2-fold. The variation was, therefore,
much smaller than for the LC50. This could suggest that
NOEC, despite its shortcomings, is a better measure of risk
than LC50. However, it could also mean that NOEC results in
overprotective risk assessments.
For PNECs that were based on the risk equation of the

matrix models, there was always a small increase in risk, but
never a large increase in risk. This means that the clearly over-
and underprotective assessments were avoided.
A better way to quantify uncertainty is to examine how large

the margin of safety is to the concentration where the effect is
unacceptable. In the present study, the concentration where the
probability for pseudo extinction was 10%, i.e. approximately
doubled from the undisturbed population, was used as an
example of a level that can be considered as the acceptable
limit. Table 2 shows the ratio between the different PNECs and

C10%. When acute LC50 data and AF = 1000 were used, the
mean PNEC/C10% ratio was 1.65. This means that PNECacute 1000
was, on average, 65% higher than the true acceptable
concentration, rendering underprotective results. Looking at the
five chemicals individually shows that the PNEC/C10% ratio
ranged from 0.10 to 7.02. This means that the risk assessment
could end up with a PNEC that was only 10% of the true
acceptable concentration, just as well as more than seven times
higher than the true acceptable concentration. This large variation
resulted in a CV of 1.40 (i.e., the standard deviation of the five
PNEC/C10% ratios was 40% larger than the average ratio). When
chronic data (NOEC) were used, the uncertainty was reduced by
about 50% (CV = 0.71). The simple risk equations and matrix
models further reduced the uncertainty by 61% and 76%,
respectively (CV = 0.28 and CV = 0.17).
Note that the assessment factor that is used does not affect

the uncertainty, only the relative probability for over- versus
underprotective assessments. Adjusting the assessment factors
could, thus, reduce the proportion of underprotective assess-
ments, but only at the expense of more overprotective assess-
ments, and vice versa. For example, if AF = 7023 were used on
LC50, the range of PNEC/C10% ratios would be 0.014−1.00.
This means that underprotective PNECs are avoided, and that
the most overprotective PNEC would be 98.6% lower than the
true acceptable limit. If, instead, the AF for the matrix model
were adjusted in a similar way (AF = 4.02), the range of
PNEC/C10% ratios would be 0.64−1.00. In this case, the most
overprotective PNEC would only be 36% lower than the true
acceptable limit.
It could be argued that the best predictions of ecological risk

that were presented in the present study were those that were
used to define the ecological risk, i.e., the complex matrix
models that included environmental stochasticity and density
dependence. However, these models were all parametrized
from large data sets that allowed estimates of natural variation
between years, density dependence, age specific fertility etc. It
cannot be expected that adequate data are available to set up
stochastic models in most ERAs of chemicals. Furthermore,
even if data may be available, it cannot be expected that the risk
assessor has the expertise in population modeling that is needed
to parametrize and use the models, and interpret the results.
Therefore, it is essential to evaluate if simpler models can be
used. In the present study, it was clearly seen that simple risk
equations or deterministic matrix models reduced uncer-
tainty in ERA considerably compared to traditional endpoints.

Table 2. Ratios between the Different PNECs and the Concentration Where the Probability for Pseudo Extinction is 10%
(C10%); A Ratio Higher than One Means That the PNEC Results in More than 10% Probability for Pseudo Extinction (Average
Ratio for Each PNEC and the Coefficient of Variation (CV) are Also Shown)

PNECacute 1000/C10% PNECacute 100/C10% PNECchronic 100/C10% PNECchronic 10/C10% PNECequation/C10% PNECmodel/C10%

EP, TCDD 1.50 15.04 0.001 0.008 0.57 0.87
EP, TBT 0.59 5.85 0.26 2.63 0.52 0.86
EP, MC 7.02 70.23 0.21 2.09 0.82 1.34
EP, 4-NP 0.32 3.20 0.09 0.87 0.63 0.96
EP, ZnP 0.12 1.19 0.27 2.72 0.33 0.94
perch, TCDD 1.50 14.96 0.001 0.008 0.56 1.33
perch, TBT 0.58 5.77 0.26 2.59 0.51 1.11
perch, MC 4.43 44.28 0.13 1.32 0.52 1.26
perch, 4-NP 0.25 2.54 0.07 0.69 0.50 0.97
perch, ZnP 0.10 1.04 0.24 2.39 0.29 1.07
average 1.65 16.51 0.15 1.53 0.52 1.07
CV 1.40 1.40 0.71 0.71 0.28 0.17
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More complex models, such as those that include environ-
mental stochasticity and density dependence, may have a role at
higher tiers in ERA.
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